12 Arenes and Aromaticity

12.1 AROMATIC COMPOUNDS

chloramphenicol

naphthalene

anthracene

phenanthrene

12.2 THE COVALENT STRUCTURE OF BENZENE

or

Hypothetical bicyclic benzene structure with nonequivalent secondary and tertiary hydrogen atoms.

Only one bromobenzene isomer exists. Therefore, all six hydrogen atoms in benzene must be equivalent.

Resonance Theory and Benzene

equivalent contributing structures for the resonance hybrid of benzene

Resonance Energy

Figure 12.1 Heats of Hydrogenation and the Resonance Stabilization of Benzene The relative energies of cyclohexene, 1,3-cyclohexadiene, "1,3,5-cyclohexatriene," and benzene and their heats of hydrogenation to form cyclohexane in kJ mole ${ }^{-1}$.

12.3 THE HÜCKEL RULE

1. To be aromatic, a molecule must be cyclic.
2. The molecule must be planar.
3. The ring must contain only sp^{2}-hybridized atoms that can form a delocalized system of π molecular orbitals.
4. The number of π electrons in the delocalized π system must equal $4 n+2$, where n is an integer.

Nonaromatic and Antiaromatic Cyclic Polyenes

Aromatic lons, I

cycloheptatrienyl cation

Aromatic lons, II

Aromatic lons, III

12.4 MOLECULAR ORBITALS OF AROMATIC AND ANTIAROMATIC COMPOUNDS

Figure 12.2 Relative energies of benzene's MOs and their occupancy.

Figure 12.3 Molecular Orbitals in Benzene and Their Relative Energies

Relative energies of benzene's MOs and their occupancy. The lowest energy MO, π_{1} is symmetric, and has no nodal planes. Orbitals π_{2} and π_{3}, have the same energy. They are antisymmetric, and have one nodal plane. Each of the bonding MOs has two electrons. MOs π_{4}, π_{5} and π_{6} have energy greater than zero. They are antibonding, and contain no electrons.

Figure 12.4 Energy Levels and Occupancies of the Molecular Orbitals of Cycloheptatrienyl Cation The cylcoheptatrienyl cation contains $4 n+2=6 \pi$ electrons. Therefore, it is aromatic. All three bonding π MOs are fully occupied, and the antibonding orbitals are empty.

Figure 12.5 Energy Levels and Occupancies of the Molecular Orbitalsof Cyclopentadienyl Anion The cylcopentadienyl anion contains $4 n+2=6 \pi$ electrons. Therefore, it is aromatic. All three bonding π MOs are fully occupied, and the antibonding orbitals are empty.

Figure 12.6 Energy Levels and Occupancies of the Molecular Orbitals of Cycloheptatrienyl Anion
The cylcoheptatrienyl anion contains $4 n=8 \pi$ electrons, where $n=2$. Therefore, it is an unstable antiaromatic species. All three bonding π MOs are fully occupied, but the antibonding $\pi_{4}{ }^{*}, \pi_{5}{ }^{*}$ orbitals each have one electron.

12.5 HETEROCYCLIC AROMATIC COMPOUNDS

12.7 POLYCYCLIC AROMATIC COMPOUNDS

anthracene

Figure 12.8 Resonance Structures of Naphthalene The ten π electrons of naphthalene are delocalized over both rings. Three resonance forms can be written using localized double bonds.

2 p orbitals in naphthalene

Less stable resonance form

Most stable resonance form

Carcinogenic Aromatic Compounds

1,2-benzanthracene

1,2,5,6-dibenzanthracene

3,4-benzpyrene

Figure 12.7 Relative Energy Levels of the Cyclopropenium Ion
The cyclopropenium cation contains $4 \mathrm{n}+2=2 \pi$ electrons for $\mathrm{n}=0$. Therefore, it is aromatic. Its two bonding π electrons occupy π_{1}, and the antibonding $\pi_{2}{ }^{*}$, $\pi_{3}{ }^{*}$ orbitals are empty.

Figure 12.8 Relative Energy Levels of Cyclobutadiene
Cyclobutadiene is a $4 \mathrm{n} \pi$ antiaromatic molecule, for $\mathrm{n}=1$. It has two bonding electrons in π_{1}, and one electron in each of the nonbonding $\pi_{2}{ }^{*}, \pi_{3}{ }^{*}$ orbitals. It is a very unstable diradical.

